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XAI

1. Explanations are contrastive
— they are sought in response 
to particular counterfactual cases 
[foilsin]: people do not ask why 
P happened, but rather why P happened instead of Q. 

2. Explanation are selected (in a biased manner) —
people rarely, if ever, expect an explanation that 
consists of an actual and complete cause of an event. 
Humans are adept at selecting one or two causes 
(this selection is influenced by cognitive biases)
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XAI

3. Probabilities probably don’t matter
—referring to probabilities or 
statistical relationships in 
explanation is not as effective as referring to causes. 
The most likely explanation is not always the best 
explanation for a person (using statistical 
generalizations to explain why events occur is 
unsatisfying, unless accompanied by an underlying 
causal explanation for the generalisation itself).

4. Explanations are social — they are presented 
relative to the explainer’s beliefs about the 
explainee’s beliefs. 
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XAI

Explanations are not just 
the presentation of associations 
and causes (causal attribution), 
they are contextual. 

While an event may have many causes, often the 
explainee cares only about a small subset (relevant to 
the context), the explainer selects a subset of this subset 
(based on several different criteria), and explainer and 
explainee may interact and argue about this explanation.
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Interpretability:

The degree to which an observer 
can understand the cause of a decision.
Or Biran & Courtenay Cotton: “Explanation and justification in machine 
learning: A survey,” IJCAI-17 Workshop on Explainable AI (XAI), Melbourne, 
Australia, 20 August 2017.

The degree to which a human observer 
can consistently predict the model’s output.
Been Kim, Rajiv Khanna & Oluwasanmi Koyejo: “Examples are not enough, 
learn to criticize! Criticism for interpretability.” NIPS’2016
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Model-Agnostic Methods

 PDP [Partial Dependence Plot], a.k.a. PD plot

 ICE [Individual Conditional Expectation]

 ALE [Accumulated Local Effects]

 LIME [Local Interpretable Model-agnostic Explanations]

 Anchors

 SHAP [Shapley Additive exPlanations]
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PDP [Partial Dependence Plot]

 Función de dependencia parcial

 Estimación a partir del conjunto de entrenamiento:

Jerome H. Friedman: “Greedy function approximation: A gradient boosting 
machine.” Annals of Statistics (2001): 1189-1232

Qingyuan Zhao & Trevor Hastie: “Causal interpretations of black-box 
models.” Journal of Business & Economic Statistics, 2021
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ICE [Individual Conditional Expectation]

Local method equivalent to the PDP global method, 
i.e. how the instance's prediction changes 
when a feature changes.

Variants
 Centered ICE [c-ICE]

 Derivative ICE [d-ICE]

Alex Goldstein et al.: “Peeking inside the black box: Visualizing statistical 
learning with plots of individual conditional expectation.” Journal of 
Computational and Graphical Statistics 24.1 (2015): 44-65. 9



ALE [Accumulated Local Effects]

i.e. how features influence the prediction of a machine 

learning model on average

 M plots average the predictions over the conditional 

distribution.

 ALE plots average the changes in the predictions and 

accumulate them

Daniel W. Apley: “Visualizing the effects of predictor variables in black 

box supervised learning models.” arXiv preprint, 2016, arXiv:1612.08468 10

Feature Importance

IDEA: Measure the importance of a feature by calculating 
the increase in the model's prediction error after 
permuting the feature. A feature is "important" if 
shuffling its values increases the model error (i.e. the 
model relied on the feature for the prediction).

e.g.   Model Reliance
Aaron Fisher, Cynthia Rudin & Francesca Dominici. 
“Model Class Reliance: Variable importance measures for any 
machine learning model class, from the ‘Rashomon’ perspective.” 
arXiv, 2018. https://arxiv.org/abs/1801.01489
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Feature Interaction

 Friedman’s H-statistic
Jerome H. Friedman & Bogdan E. Popescu: “Predictive learning via rule 
ensembles.” The Annals of Applied Statistics. JSTOR, 916–54. (2008)

 VIN [Variable Interaction Networks]
Giles Hooker: “Discovering additive structure in black box functions.” 
KDD’2004, 10th ACM International Conference on Knowledge Discovery 
and Data Mining

 Partial dependence-based feature interaction
Brandon M. Greenwell, Bradley C. Boehmke & Andrew J. McCarthy: “A 
simple and effective model-based variable importance measure.” arXiv
preprint arXiv:1805.04755 (2018)
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LIME [Local interpretable 
model-agnostic explanations]

Local surrogate model

Marco Tulio Ribeiro, Sameer Singh & Carlos Guestrin: 
“Why should I trust you?: Explaining the predictions of any classifier.” 
KDD’2016, Proceedings of the 22nd ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining.

https://github.com/marcotcr/lime 13



LIME [Local interpretable 
model-agnostic explanations]

Example: Wine quality

https://github.com/Milan-Chicago/Explainable-AI-
Examples/blob/master/Explainable%20Notebooks/LIME/LIME.ipynb
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LIME [Local interpretable 
model-agnostic explanations]

Warnings!

 Instability of the explanations.
David Alvarez-Melis & Tommi S. Jaakkola: “On the robustness of
interpretability methods.” arXiv preprint arXiv:1806.08049 (2018)

 Hidden biases (LIME explanations can be manipulated)
Dylan Slack et al.: “Fooling LIME and SHAP: Adversarial attacks on post 
hoc explanation methods.” Proceedings of the AAAI/ACM Conference on 
AI, Ethics, and Society, 2020
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SP-LIME [Submodular Pick LIME]

Submodular pick for explaining models

1. Run the explanation model on all instances (all x’s).
2. Compute the global importance of individual features.
3. Maximize the coverage function by iteratively adding 
the instance with the highest maximum coverage gain 
4. Return a representative nonredundant explanation set.

NOTE: Greedy algorithm, 
since coverage maximization 
is NP-hard. 16

Anchors

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin. 
“Anchors: High-Precision Model-Agnostic Explanations.” 
AAAI Conference on Artificial Intelligence (AAAI), 2018
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SHAP [SHapley Additive exPlanations]

Shapley value [@ coallitional game theory]
a method for assigning payouts to players 
depending on their contribution to the total payout

Lloyd S. Shapley: “A value for n-person games.” 
Contributions to the Theory of Games 2.28 (1953): 307-317
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SHAP [SHapley Additive exPlanations]

Shapley value

 Linear model:
 Contribution of the j-th feature to the prediction:

Sum of all the feature contributions
= predicted value - average predicted value
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SHAP [SHapley Additive exPlanations]

Shapley value

Estimating the Shapley value
through Monte Carlo sampling:

Warnings! 
 Only approximate solutions are feasible.
 Interpretation of the estimated Shapley value: 

the contribution of a feature value to the difference 
between the actual prediction and the mean prediction 
given the current set of feature values

Erik Štrumbelj & Igor Kononenko: 
“Explaining prediction models and individual predictions with feature 
contributions.” Knowledge and Information Systems 41.3 (2014): 647-665
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SHAP [SHapley Additive exPlanations]

SHAP, a method to explain individual predictions.
Scott M. Lundberg & Su-In Lee: 
“A unified approach to interpreting model predictions.” NIPS’2017

 KernelSHAP, a kernel-based estimation approach for 
Shapley values inspired by local surrogate models.

 SHAP feature importance: 
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SHAP [SHapley Additive exPlanations]

https://github.com/slundberg/shap 22

SHAP [SHapley Additive exPlanations]

Example: House Pricing

https://towardsdatascience.com/keras-101-a-simple-and-interpretable-neural-network-model-for-house-pricing-regression-31b1a77f05ae 23



SHAP [SHapley Additive exPlanations]

SHAP pros:
 computes Shapley values (solid theoretical foundation)
 connects LIME and Shapley values (in KernelSHAP)

SHAP cons:
 slow KernelSHAP
 ignores feature dependence
 can be misinterpreted
 can be used to create intentionally misleading 

interpretations to hide biases (as LIME).
24
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Example-Based Methods

explain a model by selecting instances of the dataset and 
not by creating summaries of features

 Counterfactual explanations
 Adversarial examples
 Prototypes
 Influential instances
 Nearest neighbors (i.e. k-NN)
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Counterfactual Explanations

i.e. how an instance has to change 
to significantly change its prediction.
(the opposite to anchors)

“If X had not occurred, Y would not have occurred”

e.g.
Sandra Wachter, Brent Mittelstadt & Chris Russell: “Counterfactual 
explanations without opening the black box: Automated decisions and the 
GDPR.” Harvard Journal of Law & Technology, 2018
Susanne Dandl, Christoph Molnar, Martin Binder & Bernd Bischl: "Multi-
Objective Counterfactual Explanations,” Parallel Problem Solving from
Nature, PPSN’2020.
Arnaud Van Looveren & Janis Klaise: “Interpretable Counterfactual 
Explanations Guided by Prototypes.” arXiv, 2019. arXiv:1907.02584 26

Adversarial Examples

i.e. counterfactuals used to fool machine learning models
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XAI

Neural Network Interpretation Methods

 Feature Visualization

 Pixel Attribution
 Saliency Maps
 Path-Attribution Methods

 DeepLIFT
 Deep Taylor
 Integrated Gradients
 XRAI

 Concepts 28

Feature Visualization
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Feature Visualization

Lucid
https://github.com/tensorflow/lucid
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Feature Visualization

Network Dissection (CVPR’2017)
http://netdissect.csail.mit.edu/

“By measuring the concept that best matches each 
unit, Net Dissection can break down the types of 
concepts represented in a layer” 31



Pixel Attribution

 Gradient-only methods tell us whether a change in a 

pixel would change the prediction [saliency maps]

 Vanilla Gradient

 DeconvNet [LRP: Layer-wise Relevance Propagation]

 Grad-CAM [Gradient-weighted Class Activation Map]

 SmoothGrad

 Path-attribution methods compare the current image 

to a reference image [baseline]

 Deep Taylor

 DeepLIFT

 Integrated Gradients

 XRAI 32

Pixel Attribution

Saliency Maps
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Pixel Attribution

DeepLIFT [Deep Learning Important FeaTures]
ICML’2017

Avanti Shrikumar, Peyton Greenside, Anshul Kundaje
“Learning Important Features Through Propagating Activation Differences”
ICML’2017, https://arxiv.org/abs/1704.02685
https://github.com/kundajelab/deeplift
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Pixel Attribution

DeepSHAP = DeepLIFT + Shapley values
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Pixel Attribution

Deep Taylor
Pattern Recognition ’2017
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Pixel Attribution

Deep Taylor
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Pixel Attribution

Integrated Gradients
ICML’2017

https://keras.io/examples/vision/integrated_gradients/

Mukund Sundararajan, Ankur Taly, Qiqi Yan
“Axiomatic Attribution for Deep Networks”
ICML’2017, https://arxiv.org/abs/1703.01365
https://github.com/ankurtaly/Integrated-Gradients
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Pixel Attribution

XRAI: Better Attributions Through Regions
ICCV’2019
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Concepts

TCAV [Testing with Concept Activation Vectors]
ICML’2018
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Concepts

ACE [Automatic Concept-based Explanations]
NIPS’2019

41



Concepts

CBM [Concept Bottleneck Models]
ICML’2020
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Concepts

CW [Concept Whitening]
Nature Machine Intelligence, 2020

“When a concept whitening module is added to a CNN, 
the axes of the latent space are aligned with known 
concepts of interest.” 43
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