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1. Explanations are contrastive Explanation in artificial intelligence:
— they are sought in response  mmsighs from the social sciences
to particular counterfactual cases
[foilsin]: people do not ask why
P happened, but rather why P happened instead of Q.

ELSEVIER

2. Explanation are selected (in a biased manner) —
people rarely, if ever, expect an explanation that
consists of an actual and complete cause of an event.
Humans are adept at selecting one or two causes
(this selection is influenced by cognitive biases)
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5. Probabilities prObably don’t matter ;EI):I\)JI:\nation in artificial intelligence:

—referring to probabilities or Insights from the social sciences

statistical relationships in

explanation is not as effective as referring to causes.

The most likely explanation is not always the best

explanation for a person (using statistical

generalizations to explain why events occur is

unsatisfying, unless accompanied by an underlying

causal explanation for the generalisation itself).

4. Explanations are social — they are presented
relative to the explainer’s beliefs about the
explainee’s beliefs.
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Explanations are not just AL e
the presentation of associations

. . Explanation in artificial intelligence:
d nd causes (Ca usal attrl bUtlon)[ Insights from the social sciences
they are contextual.

While an event may have many causes, often the
explainee cares only about a small subset (relevant to
the context), the explainer selects a subset of this subset
(based on several different criteria), and explainer and
explainee may interact and argue about this explanation.
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Interpretability:

The degree to which an observer

can understand the cause of a decision.

Or Biran & Courtenay Cotton: “Explanation and justification in machine
learning: A survey,” IJCAI-17 Workshop on Explainable AI (XAI), Melbourne,
Australia, 20 August 2017.

The degree to which a human observer

can consistently predict the model’s output.
Been Kim, Rajiv Khanna & Oluwasanmi Koyejo: “Examples are not enough,
learn to criticize! Criticism for interpretability.” NIPS2016
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Model-Agnostic Methods

= PDP [Partial Dependence Plot], a.k.a. PD plot

= ICE [Individual Conditional Expectation]

= ALE [Accumulated Local Effects]

= LIME [Local Interpretable Model-agnostic Explanations]

= Anchors

SHAP [Shapley Additive exPlanations]




PDP [Partial Dependence Plot]

= Funcion de dependencia parcial
f aslas) = B [£ (05:20)] = [ £ (e5.20)dP(zc)

= Estimacidn a partir del conjunto de entrenamiento:
Fales) =33 F as,sl)

Jerome H. Friedman: “Greedy function approximation: A gradient boosting
machine.” Annals of Statistics (2001): 1189-1232

Qingyuan Zhao & Trevor Hastie: “Causal interpretations of black-box
models.” Journal of Business & Economic Statistics, 2021

ICE [Individual Conditional Expectation]

Local method equivalent to the PDP global method,
i.e. how the instance's prediction changes
when a feature changes.

Variants
= Centered ICE [c-ICE] P ,
Fomi=1" —1f (%Y
= Derivative ICE [d-ICE]
f(z) = f (zs,2c) = g(zs) + h(zc), with %(:) =g'(z5)

Alex Goldstein et al.: “Peeking inside the black box: Visualizing statistical
learning with plots of individual conditional expectation.” Journal of )
Computational and Graphical Statistics 24.1 (2015): 44-65.




ALE [Accumulated Local Effects]

i.e. how features influence the prediction of a machine
learning model on average

= M plots average the predictions over the conditional
dIStrIbUtlon f:cs,M(xS) = EXchs [f(XS1 XC')|XS = :L‘s]

=/ f(xs,xc)P(xcle)dwc

= ALE plots average the changes in the predictions and
accumulate them

. zs ~S
fasare(@s) = [ Bxaxs [ (
20,1

s ~S
— / / f (zs,zc)P(zc|zs)dzcdzs — constant
20,1 o

X5, Xe)| Xs = zg] dzg — constant

Daniel W. Apley: “Visualizing the effects of predictor variables in black
box supervised learning models.” arXiv preprint, 2016, arXiv:1612.08468

Feature Importance

IDEA: Measure the importance of a feature by calculating
the increase in the model's prediction error after
permuting the feature. A feature is "important” if
shuffling its values increases the model error (i.e. the
model relied on the feature for the prediction).

e.g. Model Reliance

Aaron Fisher, Cynthia Rudin & Francesca Dominici.

“Model Class Reliance: Variable importance measures for any
machine learning model class, from the ‘Rashomon’ perspective.”
arXiv, 2018. https://arxiv.org/abs/1801.01489




Feature Interaction

= Friedman’s H-statistic
Jerome H. Friedman & Bogdan E. Popescu: “Predictive learning via rule
ensembles.” The Annals of Applied Statistics. JSTOR, 916-54. (2008)

= VIN [Variable Interaction Networks]
Giles Hooker: “Discovering additive structure in black box functions.”
KDD"2004, 10t ACM International Conference on Knowledge Discovery
and Data Mining

= Partial dependence-based feature interaction
Brandon M. Greenwell, Bradley C. Boehmke & Andrew J. McCarthy: “A
simple and effective model-based variable importance measure.” arXiv
preprint arXiv:1805.04755 (2018)

LIME [Local interpretable

model-agnostic explanations]

Local surrogate model
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Marco Tulio Ribeiro, Sameer Singh & Carlos Guestrin:

“Why should I trust you?: Explaining the predictions of any classifier.”
KDD"2016, Proceedings of the 22" ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. '

https://qgithub.com/marcotcr/lime




LIME [Local interpretable

model-agnostic explanations]
Example: Wine quality

Local explanation

alcohol > 0.54

total sulfur dioxide <= -0.74 I
volatile acidity > 0.63 | NN

-0.23 < sulphates <= 0.42

free sulfur dioxide <= -0.75 [ ]
citric acid <=-0.93
density <= -0.60
chlorides <= -0.37
fixed acidity <= -0.70 | |
-0.01 < pH <=0.58

-0.05 0.00 0.05 0.10 0.15

https://github.com/Milan-Chicago/Explainable-AI-
Examples/blob/master/Explainable%20Notebooks/LIME/LIME.ipynb

LIME [Local interpretable

model-agnostic explanations]

Warnings!

= Instability of the explanations.
David Alvarez-Melis & Tommi S. Jaakkola: “On the robustness of
interpretability methods.” arXiv preprint arXiv:1806.08049 (2018)

= Hidden biases (LIME explanations can be manipulated)
Dylan Slack et al.: “Fooling LIME and SHAP: Adversarial attacks on post
hoc explanation methods.” Proceedings of the AAAI/ACM Conference on
Al, Ethics, and Society, 2020




SP-LIME [Submodular Pick LIME]

Submodular pick for explaining models

1. Run the explanation model on all instances (all x’s).
2. Compute the global importance of individual features.

3. Maximize the coverage function by iteratively adding
the instance with the highest maximum coverage gain

4. Return a representative nonredundant explanation set.

f1 f2 f3 f4 f5
Y

NOTE: Greedy algorithm,
since coverage maximization
is NP-hard.

@y @) @) @) @)

Anchors

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin.
“Anchors: High-Precision Model-Agnostic Explanations.”
AAAI Conference on Artificial Intelligence (AAAI), 2018




SHAP [SHapley Additive exPlanations]

Shapley value [@ coallitional game theory]

a method for assigning payouts to players
depending on their contribution to the total payout

g I ' ==)  €310,000

50 m?
1st floor

g I ' =m)  €320,000

50 m?
1st floor

Lloyd S. Shapley: “A value for n-person games.”
Contributions to the Theory of Games 2.28 (1953): 307-317

SHAP [SHapley Additive exPlanations]

Shapley value
= Linear model:  f(z) =B+ Bizi+...+ By
= Contribution of the j-th feature to the prediction:

6i(f) = Bjzj — E(B;X;) = Bjzj — BiE(X;)

Sum of all the feature contributions
= predicted value - average predicted value

Z Pj .f) = Z(ﬂjma E(B;X;))

=(Bo + Z Bizj) — (Bo+ > E(BiX;))

J=1 Jj=1

=f (z) - E(f (X))




SHAP [SHapley Additive exPlanations]

Shapley value

Estimating the Shapley value . f@m) - f@m)
through Monte Carlo sampling: o ,;1( Y )

Warnings!
= Only approximate solutions are feasible.

= Interpretation of the estimated Shapley value:
the contribution of a feature value to the difference
between the actual prediction and the mean prediction
given the current set of feature values

Erik Strumbelj & Igor Kononenko:
“Explaining prediction models and individual predictions with feature ST
contributions.” Knowledge and Information Systems 41.3 (2014): 647-665 \§i

SHAP [SHapley Additive exPlanations]

SHAP, a method to explain individual predictions.

Scott M. Lundberg & Su-In Lee:
“A unified approach to interpreting model predictions.” NIPS'2017

= KernelSHAP, a kernel-based estimation approach for
Shapley values inspired by local surrogate models.

M
9(') =+ Y $i7}

J=1

= SHAP feature importance:

n
=YY
=1




SHAP [SHapley Additive exPlanations]

Output =0.4 Output =0.4
+04 «— Age =65
Explanation — Sex=F
— BP =180
“— BMI =40
T
Base rate = 0.1 Base rate =0.1

https://github.com/slundberg/shap
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https://towardsdatascience.com/keras-101-a-simple-and-interpretable-neural-network-model-for-house-pricing-regression-31b1a77f05ae




SHAP [SHapley Additive exPlanations]

SHAP pros:
= computes Shapley values (solid theoretical foundation)
= connects LIME and Shapley values (in KernelSHAP)

SHAP cons:

= slow KernelSHAP

= ignores feature dependence
= can be misinterpreted

= can be used to create intentionally misleading
interpretations to hide biases (as LIME).

XAI

Example-Based Methods

explain a model by selecting instances of the dataset and
not by creating summaries of features

Counterfactual explanations
Adversarial examples
Prototypes

Influential instances

Nearest neighbors (i.e. k-NN)




Counterfactual Explanations

i.e. how an instance has to change
to significantly change its prediction.
(the opposite to anchors)

“If X had not occurred, Y would not have occurred”

e.qg.
Sandra Wachter, Brent Mittelstadt & Chris Russell: “Counterfactual
explanations without opening the black box: Automated decisions and the

GDPR.” Harvard Journal of Law & Technology, 2018

Susanne Dandl, Christoph Molnar, Martin Binder & Bernd Bischl: "Multi-
Obijective Counterfactual Explanations,” Parallel Problem Solving from
Nature, PPSN"2020.

Arnaud Van Looveren & Janis Klaise: “Interpretable Counterfactual
Explanations Guided by Prototypes.” arXiv, 2019. arXiv:1907.02584

i.e. counterfactuals used to fool machine learning models

input image classified as
STOP

adversarial noise

misclassified as
YIELD
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Neural Network Interpretation Methods

» Feature Visualization

= Pixel Attribution
= Saliency Maps
= Path-Attribution Methods
= DeepLIFT
= Deep Taylor
= Integrated Gradients
= XRAI

= Concepts

Feature Visualization

Interpretable
Machine Learning

A Guide for Making.
Black Box Models Interpretable.




Feature Visualization

Lucid
https://github.com/tensorflow/Iucid

J Negative Neurons [colab] v Semantic Dictionaries [colab]
¢ - T Saying “neuron 312 fired” isnt very meaningful to

humans. Combining neuron activations with feature

visualization can make things much more meaningful.

¥ What is the opposite of what a neuron is looking for? This
can reveal interesting things about the representation. - o
L)) o

Diversity Visualization [colab] Activation Grids [colab]

Activation grids can help us see how the network

Neurons generally respond to multiple things -- ) -
& understood each spatial position.

sometimes similar and sometimes wildly different.
:  How can we visaulize this diversity?

Neuron Interactions [colab] Spatial Attribution [colab]

Do attribution to spatial positions in hidden layers --
either from the output or other hidden layers. This is
similar to traditional saliency maps.

Explore how neurons combine and interact. Linear
combinations, random directions in neuron space, and
interpolation.

Regularizing Visualizations [colab] Ry © Channel Attribution [colab]
One of the main challenges to visualizing features is —— ?t(::;lbilt?o(:f;ztevc(;efiact:;sn:flfseicr: ::: doe:tz;te?r\sNaencda?hise
regularizing the feature visualizations. Try different 4 Aty h
techniques and fiddle with hyperparameters. ee a output, along with feature visualization, to explore this.

Neuron Groups [colab]

Explore how groups of neurons work together to
represent objects in an image. Automatically extract
neuron groups and then visualize them.

Feature Visualization

Network Dissection (CVPR2017)
http://netdissect.csail.mit.edu/

Input image Network being probed Pixel-wise segmentation

/_/\ A

CSax

g
/
0
2

Freeze trained network weights Upsample target layer Evaluate on segmentation tasks

“By measuring the concept that best matches each
unit, Net Dissection can break down the types of
concepts represented in a layer”




Pixel Attribution

= Gradient-only methods tell us whether a change in a
pixel would change the prediction [saliency maps]

= Vanilla Gradient

= DeconvNet [LRP: Layer-wise Relevance Propagation]
= Grad-CAM [Gradient-weighted Class Activation Map]
= SmoothGrad

= Path-attribution methods compare the current image
to a reference image [baseline]

= Deep Taylor

= DeepLIFT

= Integrated Gradients
= XRAI

Pixel Attribution

Soup Bowl (vanilla) Eel (vanilla)

Greyhound (vanilla)

Saliency Maps

Greyhound (vanilla) Soup Bowl (vanilla) Eel (vanilla)

Greyhound (Smoothgrad)  Soup Bowl (Smoothgrad) Eel (Smoothgrad)

Greyhound (Grad-Cam) Soup Bowl (Grad-Cam)




Pixel Attribution

DeepLIFT [Deep Learning Important FeaTures]
ICML"2017 DeepLIFT

Original Reference scores

Avanti Shrikumar, Peyton Greenside, Anshul Kundaje

“Learning Important Features Through Propagating Activation leferences )i s
ICML'2017, https://arxiv.org/abs/1704.02685 ‘
https://github.com/kundajelab/deeplift

Pixel Attribution

DeepSHAP = DeepLIFT + Shapley values
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Pixel Attribution

Deep Taylor
Pattern Recognition 2017

. forward pass
input output

heatmap

Deep Taylor

Image Sensitivity (CaffeNet) Deep Taylor (CaffeNet) Deep Taylor (GoogleNet)
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Pixel Attribution

Integrated Gradients
ICML2017

Input Normal gradients Integrated gradients

0 50 100 150 200 250 0 50 100 150 200 250

https://keras.io/examples/vision/integrated gradients/

Mukund Sundararajan, Ankur Taly, Qigi Yan

“Axiomatic Attribution for Deep Networks”
ICML2017, https://arxiv.org/abs/1703.01365
https://github.com/ankurtaly/Integrated-Gradients

Pixel Attribution

XRAI: Better Attributions Through Regions
ICCV'2019

XRAI:
Over-segment image Region-based image attributions

Original image Sum attributions Most important
and identify most regions for
important regions predicted class

Pixel-based
attribution
(integrated

gradients)




Concepts

TCAV [Testing with Concept Activation Vectors]
ICML"2018
@ © _ fuRoR™  mgRTSR
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Figure 1. Testing with Concept Activation Vectors: Given a user-defined set of examples for a concept (e.g., ‘striped’), and random
examples (@), labeled training-data examples for the studied class (zebras) (), and a trained network (©), TCAV can quantify the model’s
sensitivity to the concept for that class. CAVs are learned by training a linear classifier to distinguish between the activations produced by
a concept’s examples and examples in any layer (). The CAV is the vector orthogonal to the classification boundary (vt red arrow). For
the class of interest (zebras), TCAV uses the directional derivative Sc () to quantify conceptual sensitivity ©.

Concepts

ACE [Automatic Concept-based Explanations]
NIPS'2019

(c) Computing saliency of concepts

Importance Scores

-
-
-

Ry

Figure 1: ACE algorithm (a) A set of images from the same class is given. Each image is segmented
with multiple resolutions resulting in a pool of segments all coming from the same class. (b) The
activation space of one bottleneck layer of a state-of-the-art CNN classifier is used as a similarity
space. After resizing each segment to the standard input size of the model, similar segments are
clustered in the activation space and outliers are removed to increase coherency of clusters. (d) For
each concept, its TCAV importance score is computed given its examples segments.




Concepts

CBM [Concept Bottleneck Models]
ICML2020

input x
concepts ¢

e
sclerosis
bone spurs task y

Regressor arthritis
grade (KLG)

narrow joint space

|

concepts ¢

N
wing color
undertail color task y

Classifier
bird species

beak length

Figure 1. We study concept bottleneck models that first predict
an intermediate set of human-specified concepts ¢, then use ¢ to
predict the final output y. We illustrate the two applications we
consider: knee x-ray grading and bird identification.

Concepts

CW [Concept Whitening]
Nature Machine Intelligence, 2020

Replace the 2nd layer (BN) with CW Replace the 16th layer (BN) with CW

Most activated Most activated

“When a concept whitening module is added to a CNN,
the axes of the latent space are aligned with known
concepts of interest.”
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Interpretable
Machine Learning

A Guide for Making
Black Box Models Interpretable

= Christoph Molnar:
Interpretable Machine Learning: chisuph ober
A Guide for Making Black Box Models Interpretable
https://christophm.github.io/interpretable-ml-book/
2021. ISBN 0244768528

En espafiol (version 2019): https://fedefliguer.github.io/AAI/




